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ABSTRACT: We study the Peskin-Takeuchi S-parameter of holographic technicolor models.
We present the recipe for computing the parameter in a generalized holographic setup. We
then apply it to several holographic models that include: (a) the Sakai-Sugimoto model and
(b) its non-compactified cousin, (c) a non-critical analog of (a) based on near extremal AdSg
background, (d) the KMMW model which is similar to model (a) but with D6 and anti-
D6 flavor branes replacing the D8 and anti-D8 branes, (e) a model based on D5 branes
compactified on two S's with D7 and anti-D7 probe branes and (f) the conifold model
with the same probe branes as in (e). The models are gravity duals of gauge theories with
SU(Nr¢) gauge theory and with a breakdown of a flavor symmetry U(Nrp) x U(Npp) —
Uy (Nrp). The models (a), (c),(d) and (e) are duals of a confining gauge theories whereas
(b) and (f) associate with non confining models.

The S-parameter was found to be S=sNpc where s is given by 0.017Ar¢c, 0.016 Ao,
0.095, 0.50 and 0.043 for the (a),(b),(c),(d), (f) models respectively and for model (e) s is
divergent. These results are valid in the large Ny¢o and large Ar¢ limit. We further derive
the dependence of the S-parameter on the “string endpoint” mass of the techniquarks for
the various models. We compute the masses of the low lying vector technimesons.
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1 Introduction

One of the most urgent questions in particle physics is the nature of the mechanism of
electro-weak symmetry breaking (EWSB) and in particular the exact structure of the
Higgs sector. One appealing class of models that may provide an answer to this question
are Technicolor models. In these models a new sector of strongly interacting fermions
known as techniquarks are added to the S.M instead of the scalar Higgs. This sector will
now be responsible for the spontaneous chiral symmetry breaking (ySB) via a condensate
in the TeV scale. The condensate, in a similar manner to ordinary QCD, is of a tecniquark
anti-techiquark operator. The techiquarks transform under certain representation of the
gauge group SU(Np.). In these models the Higgs boson is a composite state of a techni-
quark and an anti-etchniquark so that the hierarchy problem is avoided. One of the most
restricting demands of an EWSB model is that it should produce a small Peskin-Takeuchi
S-parameter [1]. This requirement comes from high precision electro-weak measurement.
The S-parameter defined as!

S = 167 [(IT33(0) — IT34(0)] (1.1)

IFor the derivation of the S-parameter its relation to electroweak measurement and the definition of the

variables in this expression see section (2).



is restricted to be in the range of S = —0.1 0.1 [1, 2] . A special feature of the S-
parameter that causes it to stand out among the high precision measurements, is that
by its very definition, the S-parameter is isospin-independent. Hence the S-parameter is
insensitive to the exact details of the model by which it is extended to explain the quarks
masses (extended technicolor) and other means and structures which could be added to
the model to explain the breaking of the isospin symmetry.

The main problem in dealing with technicolor models and in particular in determining
their corresponding S-parameter is the fact that like QCD they are based on a strong dy-
namics which is non-perturbative in the region of interest. The AdS/CFT correspondence
which is by now a very well known auge/gravity duality provides a useful tool to translate a
strongly coupled gauge system into weakly coupled gravity duals. This opens the opportu-
nity to use this duality for describing technicolor models in terms of weakly coupled gravity.
Indeed the authors of [3] proposed a holographic technicolor model which is based on the
Sakai-Sugimoto model [4]. The model is based on Witten’s model [5] of the near extremal
limit of Npc D4 branes compactified on a circle. Into this background a pair Npgp = 2 of
D8 and anti-D8 branes is incorporated as techiflavor probe branes. In the region that cor-
responds in the field theory to the UV, the model admits an U(Npp = 2)p X U(Npp = 2)g
chiral symmetry which is spontaneously broken in the IR into a U(Npp = 2)y symmetry.
In [3], using the AdS/CFT dictionary, the expressions for the axial and vector currents
in the boundary field theory where determined. From these one can easily calculate the
expressions for the vacuum polarization and their derivatives which then determine the S-
parameter. In fact as was discussed in [3] there is a direct way as well as a sum-rule method
to compute this parameter.

The goals of the this paper were threefold, first to generalize the construction [3] to a
wide class of models that reduces to a five-dimensional effective action of its techniflavor
gauge fields. Second, to apply this construction to certain concrete holographic models,
in particular with or without confinement and spontaneous ySB and to determine their
S-parameter as well as the low lying vector technimesons. Third to determine the general
properties of holographic models and to compare between the holographic estimate of
the S-parameter to phenomenological estimation of the S-parameter based on scaled up
version of QCD.

We start with a five dimensional effective action derived from the DBI and CS actions
of the gauge fields on the probe branes. Assuming a background that depends only on the
radial coordinate, the most general action of this nature was written down. In analogy to
the derivation of [3] the expressions for the S-parameter in both the direct method and the
sum-rule method were derived. This recipe was then applied to the following models:

e (a) The Sakai Sugimoto model [4] which is Witten’s model [5] generalized to include
D8 prob branes and admits confinement and xS B.

e (b) The uncompactified analog of the latter model. This model, which was analyzed
in [6], is dual of the NJL gauge system which does not admit confinement but still
exhibits spontaneous ySB.



(c) A non critical analog of the Sakai Sugimoto model derived in [7-9] and exhibits
both confining and spontaneous y.SB. This model consists of Nyp pairs of D4 — D4
flavor brane probing a non critical AdSg background.

e (d) The KMMW model [10] which is also based on Witten’s model but with Npp = 2
D6—D6 techniflavor probe branes. The model admits confinement and a spontaneous
breaking of global flavor symmetry which is not a chiral symmetry

e (e) A holographic model [11] based on the near extremal limit of D5 branes compact-
ified on two circles with D7— D7 flavor barnes. The model is confining and xSB is
spontaneous.

e (f) The Klebanov-Witten conifold model with D7— D7 flavor branes [12, 13]. This
model is conformal before adding the flavor branes but still admits spontaneous flavor

xSB.

We found that model (e) fails to serve as a candidate for Techinicolor/Higgs sector
since it has a divergent S-parameter. In the rest of the models considered we found a
positive S-parameter which is linear in Np¢ that is S = sNpe. In models (c), (d) and (f)
s is just a numerical factor independent of Apc where Ao = g%CNTC. However, in the
Sakai Sugimoto model and its AHJK cousin s was found to be linear in Ap¢c (see table 1).
Recall that the results are valid in the large Ny¢ and large Ao limit.

Holographic Technicolor was studied in recent years also in the following papers [14].
The paper is organized as follows: We start in section 2 with a brief review of the physics
behind the Peskin-Takeuchi S, T and U parameters. This section is brought for the benefit
of the readers which are not familiar with those parameters. Other readers can move
directly to section 3. Section 3 is devoted to the determination of the S-parameter in
holographic models. We derive the formulae for computing the parameter from a general
holographic model reduced to five dimensions. This is done in both a direct method as well
as a sum-rule approach. In section 4 we show the way the general result is implemented
for the Sakai-Sugimoto model as was derived in [3] and we further derive in a qualitative
way the dependence of the S-parameter on the string endpoint masses. In section 5 we
repeat the steps of section 4 but for the uncompactified version of Sakai-Sugimoto model
presented by AHJK in [6]. In section 6 we examine a holographic model derived in [8]
which is a non-critical analog of the Sakai-Sugimoto model based on N7 pairs of D4—D4
flavor brane probing a non critical AdSg background. Section 7 is devoted to analyzing
the S-parameter of the KMMW model [10]. The model is based on Witten’s model with
D6—D6 flavor probe branes. In section 8 we discuss a holographic model [11] based on the
near extremal limit of D5 branes compactified on two circles with D7—D7 flavor branes. We
then discuss in section (9) the S-parameter of a model based on the conifold with D7—D7
flavor branes. We conclude in section 10 where we present the summary of the paper and
our conclusion from this work.



2 Peskin-Takeuchi parameters [1]

In the standard model, the EWSB and fermion masses are explained by the existence of the
Higgs scalar field which acquire a non zero VEV. The physics of the Higgs sector depends on
four free parameters, the coupling constants ¢’ and g of the U(1), and SU(2), respectively,
v the VEV of the Higgs field and its mass myj. We can express certain observable quantities
via these parameters such as

/

v v qq 1
my = g=; myz = =vg?+ g%; e = ——; Gf=— 2.1
w 92 ) Z 2 g<+g°; m ) f \/502 ( )
We used three parameters to define four observable quantities so there is a hidden relation
among them which is independent of the value of the parameters in the Lagrangian. Such a
relation can be constructed for example by using the different definition of the weak mixing
angle in terms of observable quantities such as:

12 2

2 ) g myy
s =sin"fy=——5=1——5 (2.2)
w 912 + 92 m2Z
. 1/2
sin20p = | —— 2.3
! <ﬁ@m9 (2.3

Another useful definition is constructed from the polarization asymmetry of Z decays into
left and right electrons

. D(Z—eépe)—T(Z—éger) (5-— S*)Q e -
LR_F(Z—>éL€L)+F(Z—>éReR) - (%—S*)2—|—Sz .

These three different definition of the weak mixing angle coincide at tree level

sin? ,, = sin? fp = s? (2.5)

but their loop corrections are different. Subtracting them from each other or taking their
ratios produces what is known as zeroth order natural relation which means a relation
which doesn’t depends on the parameters of the Lagrangian. Hence, these relations are free
of any UV divergencies coming from counter terms (since these only alters the parameters
of the Lagrangian), and so the only quantum corrections they receive are finite and can be
considered as predictions of the quantum structure of the theory. In light of (2.5) we can
easily construct the following zeroth order natural relations:

F-d=f-52 L@ -5 L -2 (2.6)
where we used the definitions

2
My . 2

2 5 sg = sin” 6y ; cg = cos? Oy (2.7)
myz

A =1-3s>

= cos® 0, =

Another useful zeroth order natural relation we shell use is the ratio of charged to neutral-
current amplitudes denoted by p.(0), and is equal to one at tree level. Now, we would like



to estimate the radiative corrections to these relations, and hopefully to divide them into
standard model ones and to those coming from the technicolor sector which supposedly
give the true descriptions of the Higgs sector. There are many kinds of loop corrections
to these zeroth order natural relations, in addition to the corrections to the vector boson
propagator, there are vertex corrections, box diagrams, and diagrams with real photon
emission. In strongly interacting technicolor models the techniquarks do not couple directly
to the leptons and at low energies do not appear in the final states, the only place where
the new physics going to enters is through corrections to the vector boson propagator via
its vacuum polarization where they appear in loops of techniquark and anti-techniquark
pairs. Otherwise the techniquarks are not observed at low energy, hence these corrections
are called 'oblique’. We note that in general, loop contributions are not gauge invariant
one by one, but rather their sum is, but since these are the only contributions involving
the techniquarks their gauge invariance is self evident. As we noted earlier our goal is to
sperate the radiative corrections coming from the new physics from that of the standard
model, if we assume that my < m, (m;y is the mass scale of the fermions at the outer legs),
then we can ignore the vertex corrections and box diagrams since these are suppressed by

additional factor of :—% relatively to the oblique correction. So we are left with the problem
of separating the new physics contributions to the vacuum polarization from the SM’s. The
experimental data that we are trying to fit comes from physics at energy scales between
Aqcp to the TeV scale. In this range of energies the QCD is weakly coupled while the
techniquarks are still in the strong coupling regime. Hence we can use perturbation theory
to estimate the quarks contributions to the vacuum polarization amplitude of the gauge
fields but we cannot do so for the techniquarks. The one loop SM oblique corrections
to (2.6) are given by %3

3o m?
2 _ .2 ¢
-8y =—"———5—5—5 +... 2.8
7 %0 167 (c? — s%) m%, i (28)
22 3o m

¥ 16752 m2

Now, denoting II;; as the correlators of the I and J currents of SU(2); x U(1)y,
where only the contributions coming from the new physics are taking into account, then
after some algebra we obtain the following form for the radiative corrections to (2.6) due

2We note that the one loop vacuum polarization amplitude is proportional to :—2‘2’ where my is the mass
of the fermion in the loop, so one only consider the top quark contribution. B

30f course one should also consider the contributions coming from the physical Higgs boson, but since
we are replacing this sector by the technicolor sector, it is omitted [15].



to the Technicolor sector:

22

2 2 2 2 ec 2 2 2
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6282
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pi(0) =1 = %[HH(O) — H33(0)] (2.11)
Z

Thus, we see that it is both possible and natural to isolate the radiative corrections
due to new physics from those coming from the SM fields. If the new physics included in
the vacuum polarization amplitude is associated with new heavy particles of mass scale
mre > my, then we will see a rapid convergence of a Taylor expansion in ¢? of these
amplitude. Thus it is natural to expand the II;; in powers of ¢2, neglecting the order ¢*

and beyond:
oq(4*) =~ ¢°le(0) (2.12)
s50(q%) = ¢°Il55(0)
I33(¢%) ~ 33(0) + ¢*I133(0)
IT11(¢%) = Ty1(0) + ¢*IT5; (0)

There are six independent coefficient in (2.12) but three linear combinations of them must
cancel out since there are no UV divergences in (2.9), (2.10) and (2.11) despite there are
in the II; ;. The remaining three are the following:

§ = 1671} (0) — Mg 0)] (2.13)
T = 8227;%77[1_[11(0) — II33(0)]

U = 1671}, (0) — I35(0)]

Substituting (2.13) into (2.9), (2.10) and (2.11) yields

m? ac? 1 2 —s?
m—‘g/ — Cg = C2 — 52 |:—§S —|— 62T + 452 U:| (214)
Z
a 1
SE(QQ) - Sg = m |:ZS — S C2T:|

To summarize, we concluded that under the above assumptions the dominant radiative
corrections to (2.6) comes from the vacuum polarization amplitudes, and these receive
contributions from two sources, the standard model part given by (2.8) which is fixed and

well known, and a part coming from a sector of new physics not determine and are given
by (2.14).



According to (2.14), we have a three parameter description of the radiative corrections
due to the technicolor sector, and since the quantities in the left hand side are all observable
there are experimental bounds on the magnitude of these corrections! In this paper we
focus on pure technicolor models without an extension that could produce isospin violation,
in this case the T" and U parameters are zero and we use the experimental bound on S
alone. These experimental bounds restricts S to be in the range of S = —0.1 £0.1.

The Peskin-Takeuchi S-parameter defined above in (2.13) can be also expressed as

S = 167[(IT35(0) — I3(0)] = —4[ITy(0) — I, (0)]] (2.15)

where II, and 114 are define by

i / dize (T () T2V (0)) = — (gﬂy - %>6abnv<q2>

i/d4xeiqm<jﬁA($)ij(0)> = —<9;u/ - qZ;IV)(SabHA(Cf)

where jﬁv and jﬁA are the vector current and axial-vector current respectively. Using
dispersive representation with delta function resonances these could be expressed by

9% ¢*
HV(_qQ) — n
DB iy
2 2
94,4
Ma(=¢%) =)

M, (et my,)

It follows then that S could be written as

g4 g%/n gin 216
=4r ) it (2.16)

n

where my; /4, and g%/n /a, are the masses and decay constants of the vector/axial-vector
mesons of the confined phase of the Technicolor sector.

3 The holographic S parameter

The general holographic technicolor setup is similar to that of holographic QCD.* It is based
on a gravity background that admits confinement in the sense of an area-law behavior of the
Wilson line and a discrete spectrum with a mass gap of states dual to the techniglueballs.
The background is characterized by a flux, typically associated with a RR form, denoted
here by Np¢ which corresponds to the rank of the dual technicolor gauge group SU(Np¢).
A set of N flavor probe D,, branes is incorporated in this background. The worldvolume
of the D,, flavor branes includes the four dimensional space-time, the radial direction and a
p — 4 non-trivial cycle. The physics of the flavor brane is determined by an action defined
on the worldvolume of the probe branes that include a DBI term and a CS term

Str = Sppr+ Scs = —Tp/dp+106¢\/—d€t(gind +F)+ 1T, / Z Cir N el (3.1)
k

1Below we discuss also models without confinement or without chiral symmetry.



where T}, is the tension of the D, probe branes, ginq is the induced metric on those probe
brane, F = 27Tl§F+Bind where F' is the techniflavor field strength associated with U(Npp)
gauge symmetry and Bjpq is an induced B field ( if there is one) and Cf is a k RR form.

Since an important ingredient in the technicolor scenario is the spontaneous breaking
of the technichiral symmetry, the flavor probe branes have to admit geometrically in the
region dual to the UV flavor chiral symmetry of the form Ur(N7r) X Ur(N7r) and in the
IR a spontaneous breakdown of this symmetry to the diagonal subgroup Up(Nrpg). This
requires an embedding profile of the form of a U shape. Examples of such a holographic
setup are the well known Sakai Sugimoto model [4], its non-critical analog and the recently
proposed model based on incorporating D7 flavor branes in the Klebanov Strassler model.

Integrating the DBI action over the p —4 compact cycle expanding in powers of deriva-
tives and gauge fields and keeping the lowest order one finds the following five dimensional
YM action for U(Nrr) gauge fields.

Sppr = —% / d*wdu [a(u) Fy F* + 2b(u) Fp, FP] (3.2)
where v indicates the radial direction, Greek indices are space-time indices, the contraction

of indices is done with 7, £p, a(u) and b(u) are given by

_ (21 )V
Js

a(u) = gse_¢\/det(gind)(gfrf)d)2 b(u) = gse_‘b\/det(gind)gﬁfdgﬁfé (3.3)

and where we assumed that the induced metric is diagonal and V,,_4 is the volume of

&
Il

the compact cycle the probe brane wrap. The equations of motion associated with the
variations of A, and A, are give by

a(u)o"F,, + 0" (b(u)Fy, = 0
0°Fp, =0 (3.4)

As was discussed above the geometrical realization of chiral symmetry implies that the
probe is of a form of a U shape with two branches. Thus the profile is a double valued
function of the radial coordinate, which generically is in the range co > u > ug. It is useful
to define a different coordinate z, co > z > —oo so that the boundary of one branch of
the probe brane say the left one, is at z = —oco and the boundary of the right one is at
z = 400. Expressed in terms of this coordinate the DBI action (3.2) takes the form

Sppr = —kp / d*zdz [d(z)FWF“” +b(z)F,, F** (3.5)

where

(3.6)

with u/(2) = g—Z(z). It is clear that the corresponding equations of motion take the same
form as (3.4) with z replacing u and & and b replacing a and b. We continue our discussion
here using the u coordinates but obviously we can invert the analysis using a z coordinate.



It is convenient at this point to choose the A,(z,u) = 0 gauge. The rest of the gauge
fields A, (x,u) are expanded in terms of normalizable non zero modes and non-normalizable
zero modes. In addition we divide the gauge fields into vector fields V,, which are symmetric
around ug (or under z <> —z ) and axial vector fields A, which are antisymmetric. Upon
further Fourier transforming the space-time coordinate x* — ¢* the expanded fields take
the form

A1) = V(@) (w) +A@9% (W) + ) (Vi (@), (u) +A7 (@) ¢a, (1)) (3.7)
n=1

The normalizable modes are the bulk gauge fields while the non-normalizable are by the
gauge/gravity dictionary sources for boundary currents. In fact as was shown in [4] the
gauge transformation that sets A, = 0 requires that the zero modes include massless
modes which are the Goldstone bosons associated with the spontaneous breakdown of
the techniflavor chiral symmetry. These modes play obviously an important role in the
technicolor mechanism since they will provide the mass of the electroweak gauge bosons
once part of the techniflavor symmetry is gauged.
In terms of this expansion the equations of motion (3.4) are

b
a(u)

@a%(u)auwo(qz,u)) = Pl ) (3.8)

where we have used for the normalizable modes 070,V = qQVH" = m%VH” and where we

0" (b(w)duthn(u)) = —myhn(u)

have used 0”V;* = 0 that follows from the equation of motion. These equations hold for
both the vector modes vy, as well as the axial vector modes ¢4, . Note that the eigenvalue
problem (3.8) becomes first order o.d.e for m2 = 0 and so have only one solution which is
the odd one in accordance with the fact that the pions are pseudoscalars.

Plugging the decomposition (3.7) into (3.2) we find

Spa = =2 [atqautr (atw)| S IFEM PR 0) + I @R W] + IFE 0P
n=1
HE(0) 250 (1) + 2650 (0) FE () () (1)
FRER P - (0]
2000 | V2P0, + 143 POk

3 [V 0) B(Dutbrn)? + rAz<q>\2<auwAn>2}D (3.9)
n=1

To further reduce the action to four dimensions we have to normalize the vy, and ¥y,
modes. This is done as follows Normalizing the gauge field as

Kp/dua(u)an¢Vm = 6nm (3.10)



and the same for 1 4,,. Had we chosen to use the z coordinates the normalization condition
would have same structure with a(z) replacing a(u). The resulting 4d YM action reads

2 = = [ @ty 3 (U@ + UL P ~ GmbalVE0 ~ gl 430

1
v EE D) + 3o FROF(@)) + S (311
where
bu)

ayn = _ﬂpWaqun’u:oo (312)
n

and the same for a4, expressed in terms of 1) 4,,. We define Ssoyree to be the terms in (3.9)
which involve only the source

K
% [ dadare{ V@R O + 1AL PO
+HE (@) P (u) + |Fﬁ°(q)|2¢§0(u))} (3.13)
Performing an integration by parts in the first term we find

. / d4qTr{rV,?<q>12 / dud, [V b(u)duiy] - w%au[bm)auw%]}

=% [ atarvo P whsoatliss + ¢ [ auatdy?)
(3.14)

The last term cancels exactly the |F)?(g)|* term in (3.13) and there is a similar cancelation
for the axial gauge fields Thus the leftover source term takes the form

1
Sunmee = =377 [ dadar V2P + an 4,0 (3,15
where
ay, = —ﬁpb(u)aul/}?/(u, qQ)IuZOO (3.16)
apy, = _“pb(u)au¢,04(ua q2)|u=oo (3.17)

where we have used the equations of motion and we have taken that ¢°|,—, = 1 for both
the vector and axial vector zero modes.

The coupling between the source V° (A%) and the vector (axial) mesons fields can be
read from (3.11) after the kinetic terms of the vector will be diagonalize, this is done by
the transformation

(o Ymn 0. AN __ AN 0
VM = VM + aVnVM ; AM = AM + aAnAM (3.18)

,10,



Now the action in terms of the new fields is

n 1 v
Sp /d4x Z < FV - §m%/n(VH - aVnV!?)
1 AN 2 1 2 in 0 Q
+Z|F;w (@]" = §mAn(Ap - aAnA;L) + Ssource (3.19)
where
~ 1
Ssource = _iTr/d4Q{aV0’VMO(Q)’2 +aAO‘AM(q)‘2 (320)

23 (avnlF @F + a0 )}

and we find that the decay constants are

gvn = m%/na\/n — _Kpb(u)auw\/n’u:oo (321)

gAn = m?AnaAn = _’{pb(u)au¢An|u:oo (322)

Now we have assembled all the ingredients to determine the value of the holographic S
parameter. As discussed in the previous section, this can be done in two different ways. In
the first method we need to compute holographically the two point functions of the vector
and axial vector currents. Using the AdS/CFT dictionary this reads

o 0

VT VT Spailyo—y = air(¢*) (3.23)
0

— Iy (¢*) = (TP () TV(0)) rr =

where V!? is the boundary value of the vector gauge field at u = co. The same applies also
for the axial vector correlator. Substituting (3.23) into (2.15) the holographic S-parameter

reads
0
S = —Ar(Ily(¢*) — y(¢?)) | 2=0 = —4773—(12(09/((12) — a%(¢*))|42=0
0
= iy [b0) 5 OO 0e1?) ~ 0 s)) (321)
q ¢%=0;u=0c0

The second method is based on inserting the decay constants (3.21) into the expression
for the S parameter as sum over resonance given in (2.16), yielding

— 47TZ [(av,)? = (aa,)?] = 4 (kp)b*(u) Y [(Quthv,)? = (Outpa,)?],_.  (3.25)
n

Here we have used the gauge/gravity duality rules and derived the holographic form of
the two expressions (2.15) and (2.16) that were shown in the boundary field theory to be
equivalent. In fact one can show directly in the gravity setup that the two expressions are
equivalent. This was done in [3] for the sakai Sugimoto model but can be done in a similar
way for the general setup discussed in this section. The issue of when a partial sum of a
small number of low lying states is a good approximation to the full sum is discussed in [16].
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The determination of the S-parameter follows from the solutions of the equations of
motion (3.8). The latter, as will be seen in the following sections, depend on the profile of
the probe brane and in particular on the point with minimal value of the radial direction
ug. This parameter relates to the “string endpoint mass” of the meson ( technimesons in
our case) which are defined as follows [17]

1 [
Msep = —/ V=9t Guudu (3.26)

/
2 Jy,

This mass is clearly not the current algebra or QCD mass, and in fact it is also not the
constituent mass of the meson. This mass can be thought of as mge, = %(Mmeson — TstLt)
where T is the string tension and Ly is the length of the string. The fact that it is not the
QCD mass is easily determined from the fact that the pions associated with a probe brane
profile with non trivial uy are massless. Thus this mass parameter is not related at all to
the masses of particles running in the loops that determine the S parameter. Hence we
should not expect the dependence of the S parameter to resemble that of the dependence
of the QCD masses. Indeed as will be seen in the sections below the dependence on mygep
or on ug will be different in the various models studied and nor related the dependence on
the QCD masses.

4 The Sakai Sugimoto model

The starting point of the hologrphic Technicolor Sakai Sugimoto model is Witten’s model [5].
The model describes the near extremal limit of Npo D4-branes wrapping a circle in the
x4 direction with anti periodic boundary condition for the fermions. Having in mind the
use of the model as a hologrphic technicolor model, we use from the onset Np¢ and below
Nrp instead of N. and Ny of the original model. In order to incorporate fundamental
quarks in this model it was suggested in [4] to add to this background a stack of Npp D8
branes and a stack of Npgp anti D8 brnaes Assuming Nygp < Npe the backreaction of the
flavor probe branes can be neglected as was shown to leading order in &E in [11]. The

Nrc
background which includes the metric the RR form and the dilaton is given by
ds® = <L> [—dt2+5i idr'dr? + f(u dx2] + <—D4> [—+u2d92] 4.1
Rpy J f( ) 4 W f(u) 4 ( )
27TNC u 3/4 U 3
by = Vi €4, e’ = gs<R—D4> ) Rpy = mgsNL3, flu)=1- <7>

where V; denotes the volume of the unit sphere €24 and ¢4 its corresponding volume form. [
is the string length and g, is the corresponding string coupling. The techniflavor branes are
placed in such a way that the compactified x4 direction is transverse to them asymptotically.
The manifold spanned by the coordinate u, x4 has the topology of a cigar where its tip is
at the minimum value of u which is u = ua. The periodicity of this cycle is uniquely

determine to be

dxy =27R = % (u—i‘l> =271R (4.2)
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in order to avoid a conical singularity at the tip of the cigar. We also see that the typical

scale of the glueball masses computed from excitation around (4.1), is

1

Mgb — E (43)
The confining string tension in the model is given by [17]
1 1 [ uy \*?
T, e I L S 4.4
st 271_(% gxxgtt‘uqu 271'62 <RD4> ( )
Corresponding to up one defines the following mass scale
1/2
1 3 uy
D4

Naively one could assume that at energies below My, the dual gauge theory is effectively
four dimensional; however since the theory confines and develops a mass gap of order
Mg, ~ M)y there is no real separation in mass between the confined four dimensional
hadronic modes, like the glueballs and the Kaluza-Kleine excitations on the z4 circle.
As discussers in [5] in the opposite limit where A5 = g?]Nc < R one can see from loop
calculations that the scale of the mass gap is exponentially small compared to 1/R hence
the theory does approach the 341 pure Yang-Mills theory at low energies. It is believed that
there is no phase transition when varying As/R interpolating between the gravity regime
to pure Yang-Mills. For convenience we will use from here on the freedom to re-scale the
u coordinate and set up = 1.

The flavor probe brane are space filling in all the direction except on the cigar where
we need to find their classical curve. In this case the problem is reduce to an o.d.e for
x4 = x4(u) that follows from the equation of motion associated with the DBI action of
the D8 branes. In fact the general form of the profile can be determined even without
the equations of motion. In the geometry of the cigar the flavor branes cannot end and
hence they have to fold back and end asymptotically at ©u — oo again transverse to the x4
direction. The solution of the equation of motion is found to be

v du
x4(u) :/ 3/2 = (46)
w0 f(y) ( u > [ fe®
Ep4 I (uo)ud
where ug is a constant of integration which determines the lowest value of u to which the

D8 branes extend to before folding back to the UV. Notice that this U shape with a tip at
u = ug generalizes the model of [4]. The interpretation of ug, as the string endpoint mass

was discussed in section (3). Since the orientation of the D8 was flipped while passing
through wg it is actually a D8 brane and so we have D8 — D8 system. As was mentioned

above a more natural way to look at this situation is that one begins with Npp D8 located

for u — oo at x4 = xflL) and Npp D8 brane at x4 = xflR) and finds that due to the classical
equations of motion they join together at u = ug. In the model of [4] xflL) =0 and xiR) =T.

We see that the global Ur,(Npp) X Ur(Nrp) chiral symmetry of the theory is spontaneously
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broken by the ground state down to Uy (Npp). So, we got a gravity model whose dual
gauge theory admits at low energies confinement and chiral symmetry is spontaneously
broken. These two qualities are of great importance in QCD phenomenology and also in
building technicolor models. An HTC model means we identify the gauge group as the
technicolor SU(N7.) and the quarks are techniquarks and the vector field fluctuation of
the D8 branes are vector technimesons.

We now compute S-parameter associated with the technicolor model based on the
generalized Sakai Sugimoto model by applying the two methods described in section (3).
Using the general discussion of section (3), the model is characterized by

Ty(2m))2Ve, Ryiuy? g2 N2

4q, 3672
1 5/2
_ ()2 _ v
a(u) = (u) b(u) = e (4.7)
where 8
v = (4.8)

flu)ud — f(uo)ug
Solving numerically equations (3.8) for the present case and plugging the results into (2.15)
we reproduced the results of [3]. For the anti-podal configuration (ugp = up = 1)

92N2
S = 19.66kpg = 19.66 = 0.017A7cNre (4.9)
3673

where A = g2 N7¢. The authors of [3], used the values Ny¢ = 4 and Ap¢ = 47 to compare
the holographic computation with the results of [1]. This kind of comparison has to be
taken with a grain of salt since the holographic result is valid in the limit of large Ar¢c and
large Npc.

For the general non anti-podal configurations we find that S is growing linearly with
ug. Another useful results could be obtained from Weinberg sum rule

IM4(0) = F? = (246GeV)? (4.10)

where we assigned the thechni-pion decay constant the value of the electroweak scale in
order to reproduce the spectrum of the electroweak gauge bosons. Using (3.17) this gives

F2 = a,0(0) = —ﬂpgRl_)qu’/Ly*l/Qauw%(u)\uzoo (4.11)
Numerical integration of (3.8) gives
F2 = a40(0) = 0.425ps M % o = 0.019M3 (4.12)

which set the Kaluza-Klein to My = 1.8 TeV and we can determine now the mass spectrum
of the mesons, and we find the first vector technimeson resonance to be m, ~ 1.5 TeV and
the techni-axial vector meson m,, ~ 2.27TeV [3]. Actually, after the assignment of the
Kaluza-Klein scale there are no more free parameter in the theory except ug which has no
4d interpretation.
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As we pointed out in the previous section, there is another way to to estimate the
S-parameter by using the sum over hadronic resonance given in (2.16). Summing up to

n = 8 we find
Sg = —L‘<LD8 ] —.OlATcNTc (4.13)

Thus the contribution from the eight lowest states is negative and very far from the result
found above. This is in accordance with the statement made in section based on [16], that
the higher KK modes do not decouple from the spectrum on this background and that .S,
for some finite n does not produce a good approximation for S.

Next we want to study the dependence of the S-parameter on ug. Using (3.24) for
different values of ug we found numerically that S tends to grow linearly with ug. We will
see this behavior in a more qualitative manner for large ug by using scaling argument on
either one of (3.24) or (2.16). We will show how to apply this argument on the scheme
given in (2.16) but we note that it could be applied easily the same to (3.24). We start by
changing variable in (3.8) to y = 2o and then we take the limit up > 1, in this limit we
find that

7=y = (4.14)

and (3.8) becomes

B 2R3 B
V) 0,073 ) 0y ) =~ PR () (4.15)

Up

Since the left hand side of (4.15) is independent of ug, then so is the right one, and we find

My A (4.16)
T,
Now doing the same manipulation on (3.21) we get
gvn = _ug/QKDSR_gyS/Q&_l/Zagﬂ;Vn(y)‘y:oo (417)
So we conclude that
32
0
GVn/a (4.18)
n/An R?b4
Plugging (4.16) and (4.18) into (2.16) we find
S, ~ ug (4.19)

5 The AHJK model — the uncompactified Sakai Sugimoto model

In the Sakai Sugimoto model the spontaneous breaking of the techniflavor symmetry is
attributed to the U-shape configuration of the D8 — D8 branes. As was mentioned above
this is a result of the cigar structure of the submanifold of the (u,x4) directions. It turns
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out that this is a sufficient condition for having a U-shape form but it is not a necessary
condition. That is to say that there is a U shape solution even if x4 is not compactified
at all. Decompactifying the x4 direction is achieved technically by simply substituting one
instead of f(u) in (4.1). This model was studied in [6], and the profile of the probe branes
was found to be given by (4.6) only with f(u) =1 and that the integral could be brought

1 R3/2 9 1 uy 9 1
=5 [P (503) -7 (5 3) oy

where B(p, q) and B(x,p,q) are the complete and in complete beta functions. The asymp-

to the closed form

totic separation between the D8 and D8 branes L is given by

11 9 1

T o

In terms of the dual field theory the model is in fact physically very different from the
Sakai Sugimoto model. It is a gravity model dual to a non-confining gauge theory. Recall
that the holographic expression of the string tension is given by (4.4) evaluated at the mini-
mum value of u [17] which for the present case is u = 0 and hence the string tension vanishes.

The effective five dimensional flavored gauge theory for the present case is identical to
that of the Sakai Sugimoto model, namely, the characterization given in (4.7) applies also
for the uncompactified model with the difference that now the function ~ is given by

ud

v = S (5.3)

u® — ug
Solving numerically the e.q.m of the non-normalizabe mode given in (3.8), and substi-
tuting it into (3.24) we find that the S-parameter is given by

Sasak = 0.016 Npo Are (5.4)

Here the calculation is for ug = 1 in units of I; In the Sakai Sugimoto model the minimal
value of ug is obviously ua. In the uncompactified case ug is not bounded from below and
can in principle be taken all the way to zero. This may naively imply that we can get the

S-parameter to be as small as we wish. However this is not really the case since the gravity

ls
Arc

this case which unlike the compactified model does not have confining scale M, we do not

where a is an order one numerical coefficient. For

description is only valid for uy > a

compute the low lying techinimeson masess.

6 Non critical AdSg model

In the model discussed in the previous section and in all the models we will encounter in
the following sections the flavor branes were wrapping certain non-trivial cycles on top of
spanning the Minkovski space and the radial direction. In fact the wrapped dimensions
have not played any role in the techincolor scenario and in particular in the determination
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of the S parameter. This naturally calls for models without the wrapped cycle and in
general with as less as possible extra dimensions. Models of this kind are the non-critical
gravitational models. Such a model that may serve as a non-critical dual of QCD was
proposed in [9]. This model is based on a non-critical SUGRA background presented
in [7, 8] which can be viewed as the backreaction of Ny coincident D4 branes placed in
flat 6d space with linear dilaton. In [9] the model was modified by introducing fundamental
quarks via Nygp D4 and anti-D4 prob branes.

The various fields in the background are:

2 u \? o, Raas” du? u \? 2
dsg = dxi s+ < > + < > w)dz 6.1
o <RAdS> b u ) f(u) Raas Jlupdas o

4
F) = QC<RAdS> dzo A dxy A dzo A dxs A du A dy (6.2)
2 up \’ 15
b _ ) o A X 2 _ 2

S —1- ("), R =22 6.3
da (R) Aees o

where Q. = % with N7¢ being the number of D4 brans, x4 is taken to be periodic where

to avoid conical singularity its periodicity is set to
477R?&ds

Ty~ Ty + 02y ; dry = o
A

(6.4)

We also define My as a typical scale below which the theory is effectively four dimensional:

2 Bup UA
M S TRy B o
One should note that unlike in critical SUGRA models, in this model Raq4g is a constant
independent of gsN7¢, hence the curvature is always of order one and there is no way to
go to a small curvature regime.

Into this background a set of Ny p pairs of D4—D4 prob branes are placed in a similar
manner as in the Sakai-Sugimoto model, namely they span asymptotically the coordinates
(o, ...23,25). In the corresponding brane configuration, one cannot separate the color
and flavor branes, namely the strings that connect the two types of branes are necessarily
of zero length, hence it is dual to a field theory system with chiral symmetry. The profile
of the probe branes is determined by solving the equations of motion that follow from their
DBI action. Unlike the critical case, here there is a priori an additional CS term on top
of the DBI action (3.1) of the form Scg =Ty [ P(C(5)). However, for reasons given in [18]
including the CS term yields unphysical results, hence from here on we shall set the CS
term to zero. Thus using only the DBI action the profile of the probe branes is found to be

" (ud f?(ug))du’
Tyalu) = (6.6)
‘L°<ggﬁ2fw3vhﬂ9ﬂw)—uyfww

Again for convenience we define

us

~ w10 (w) — ud0f (uo)

g (6.7)

,17,



We also rescale u to set upy = 1.
In terms of the general discussion of section (3), the model is characterized by

53N
Fine = T" (21a/)2e ¢ Raqs = \/; T;C ~ 0.0095N7c
2

a(u) = ’y% b(u) = R4 u

- 6.8
AdS 71/2 ( )

Once we obtained the solution for the non-normalizable mode by numerical integration
of (3.8) we plug it into the holographic definition of S (3.24), and got an estimation of S,
for the antipodal configuration ug = up = 1:

S = 10.3kne = 0.095N1¢ (6.9)

The dependence of S on ug for ug > up = 1 is drawn in figure 1. It is obvious from the
figure that at large ug S is a constant independent of ug. The asymptotic value it takes is
Hinc ~ 6.54. This behavior will be derived below also qualitatively.

Next we would like to compute the S parameter using the sum rule formula of (2.16).
To compute Sg, the sum over first eight resonance, we need on top of the low lying
masses also the corresponding decay constants. These are determined by solving numeri-
cally (3.21). Substituting the values of the masses and of the decay constants into (2.16)

and summing up to n = 8 we find
Sg = 8.96K,. = 0.086 N1 (6.10)

According to [16] it was anticipated that the higher KK modes will decouple from the
spectrum and that .S,, for some finite n will produce a good approximation for S.

For the general case ug > up = 1, the S-parameter seems to be almost independent of
ug as could be seen in figure 1.

In order to see the S-parameter dependence on wug in a more qualitative manner we
repeat the scaling argument we used in section (4). By changing to the dimensionless
variable y = t we find that after taking the limit uo > 1 eq. (3.8) and (3.21) becomes

0,20 T) =~ ) 1)
—ne(RAas) " 9?7 20y y—oo = guL%n (6.12)

where we noted that in this limit
3= () = S (613

y10 —-1
Both in (6.11) and (6.12) the left hand side is independent of wg, so the right hand is

independent of it as well, and we find

AdS
2
U
9vn/An ™~ R40 (615)
AdS
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Non-critical model: In blue, S vs. U .

In green, vector mesons (even modes) m, vs. u, .

In red, axial vector mesons (odd modes) mVs.Ug.

100 o
90 .
80
. *
70 -
60 - N .
S/k . *
m 50—_ g : +
40 ° R °
. *
30—_ 2 ° °
20‘ § ° < .
1O—T + M- :
7 2
T T

= masses of first four vector mesons
o masses of first four axial vector mesons

Figure 1. Sg in the non critical model vs. ug. The linearity of the vector (axial) mesons masses
in ug could be seen from their doted green (red) plots for the first 8 modes (uy = 1).

Plugging these into (2.16) we see that indeed the S-parameter is independent of ug in the
limit ug > 1.

As was shown in the previous section for the Sakai Sugimoto model, we still need to
determine the compactification scale of the system Mp. As before taking the techinipion
decay constant to equal the electro-weak scale, we find using the numerical integration

(246GeV)? = T14(0) = F? = —rpe Ry aqu®y 20,09 (1, 0)[ucoo = 0.22k,. M3 (6.16)
and the corresponding mass scale is

5 (246GeV)?
=/ 1
AT 0.0022N7¢ (6.17)

For Np¢ = 4 the scale is found to be 2.4 TeV. Using this scale combined with the eigenvalues
of (3.8) yields the following masses for the first two resonance:

mp, = 1.79TeV; Mayp = 2.98TeV (6.18)
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7 The KMMW model with D6 and anti-D6 flavor branes

As was emphasized in the last two sections, to have a chiral flavor symmetry of the form
Ur(Nrp) x Ur(NrF) one has to place a set of Npp probe branes and anti-branes in such
a way that the strings that stretch between them and between the original technicolor
branes that constitute the background cannot have a non-trivial length. That required
D8 and DS branes in the critical model and D4 and anti-D4 in the non-critical model.
However, to play the role of technicolor one may use a non chiral setup where a symmetry
of two sets of Dirac fermions of the form U;(Nrp) x Us(Nrp) is spontaneously broken to
a diagonal symmetry Up(Nrp). The dual of such a field theory can be realized by placing
a stack of D6 branes and D6 branes into Witten’s model [5]. The construction of the
D4/D6—D6 system is identical to that of the Sakai Sugimoto model but with D6—D6 prob
branes instead of the D8—DS8. The profile of the probe branes is determined by solving the
equations of motion for the three coordinates transverse to the branes. This was done by
Kruczenski et al in [10]. The D6 branes span the ordinary space-time coordinates, wrap
an So inside the Sy and curve along the cigar spanned by (u,z4) coordinates. Obviously
all the parameters of the background are those of [5] as was described in section (4). On
the other hand, the induced metric is now

Rpy

+ [<RLM>3/2f(u)(aux4)2 4 <%>3/Qﬁ]duz

where we still sets uy = 1. The curve of the D6 —D6 brane on the cigar spanned by (u, x4)
is found via the DBI action to be

2 u \*? 2 i ..d 3/21/2 3002
ds® = [—dt® + 6;jda’da’ | + Ry u'/2dQ3 (7.1)

_ 7/ 1/2 b L
xa(u) = uy' ~ f(up) / dx (7.2)
’ w w32f(@)/aTf (@) — uf f(uo)
In the terminology of section (3) this model is characterized by
Ts(2ma!)* Vo R} N:
e = — D0 VoRDy _ Nt 5y
9s (2m)?
1 2
vz u
a(u) = — b(u) = ———7%
u R3 /2
(7.3)
where
7
“ (7.4)

M) = S F ) — wlf o)

Integrating numerically the equations of motion for the non-normalizable mode we find

that for the antipodal configuration ug = up =1

d
S = 47Td—q2(a(‘)/(q2) — a%(q%))|g2—0 =~ 20.3k6 = 20.3 x .025N7¢ = 5Nr¢ (7.5)
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For the general case ug > upy = 1, we find a slow decrease of S towards the asymptotical
value S ~ 18.49 so S virtually independent of ug.

Now, we want to estimate the S-parameter using the sum over hadronic resonance given
in (2.16) and see its agreement with (7.5). This requires the values of the decay constants

of each of the vector and axial-vectoes mesons, and these are given as in (3.21) by:

gvn = m%/naVn - _56R73u2771/28u1/}\/n’u:oo (76)

gAn = mi}naAn = _KGR_3u2’7_1/26u¢An|u:oo
We plugged this into (2.16) and summed up to n = 8 and found
Sg = 8.761 = .194N7c (7.8)

We see that as in the Sakai-Sugimoto model, the higher KK modes doesn’t decouple from
the spectrum and 5, for some finite n doesn’t produce a good approximation for S.

We repeat the scaling argument to determine qualitatively the dependance of the S-

parameter on ug we. Changing to the dimensionless variable y = 7= in eq. (3.8) and (7.6),

then in the limit ug > 1 these become

m2R3 -

Yy 20, (y* 20,0 (y)) = " —n(y) (7.9)
— kg R™u 20,0y umoo = gulo (7.10)
where we denoted
Y
1= A = = (7.11)

Both in (7.9) and (7.10) the left hand side is independent of ug, so the right hand is

independent of it as well, and we find

Uo

m%/n/An ~ R (7.12)
Uo

9vn/An ~ ﬁ (713)

A brief look at (2.16) tells as that at the limit ug > 1, the S-parameter will exhibit
independency of ug.
As in the previous cases we determine the compactification scale of the model by equat-

ing the technipion decay constant to the electro-weak scale. Using numerical integration

we find

I14(0) = F2 = —k6(R) 3y 120,09 (1) |u—oo = 0.4TM3 kg = (246GeV)?  (7.14)

™

This gives Mg = 1.1 TeV. Last we add that this mass scale set the masses of the first
two resonance to be: m, = 0.7TeV, m,, = 1.16 TeV.
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8 D5 branes compactified on two circles with D7 — D7 flavor branes

Another interesting model in the context of HQCD is given by the near horizon limit of the
non-extremal background of N, D5 branes. Now, adding Nyr D7—DT prob branes into this
background we get open strings between the D5 to the D7 which are fundamentals of the
SU(N,.) gauge group in doublets of SU(Npp). The fields in this background are given by

R du?

U
ds? = E(de“dxy +dzd + f(u,up)dz?) + w Pl + Rud% (8.1)
where
u?\ 2 /
fluyup)=(1- 2 ) R* = gsN.« (8.2)
and the dilaton and 3 form field strength are given by
U 2R?
exp(¢) = gs 5 ; 3= % (83)
In this model x4 and x5 are compact
Ty = g + 27TRx4 ; T5 = Ty + 27‘1’]:53[;5 (8.4)

where in order to avoid conical singularity we must set R,. = R. We choose the D7— D7
prob branes to be space filling and flat in the My and Ss directions and curves on the
(u, x4, x5) space. We choose to parameterize the curve by the u coordinate (x4(u), x5(u), u)
where the functions x4(u) and z5(u) will be determine by the minimization of the DBI ac-

tion
T V3V, R?
Spy = —24 /duu3\/(8um4)2 + f(u, un)(Ous)? + u? f(u,up) (85)
and we find (from here on we will set up = 1)
d /
— PR / “ (8.6)
P2
\/ 21w (u = PF = 57
d /!
= PR / u (8.7)
2 _p_ =
\/ " P}~ 1)

For detailed description of the solutions as a function of the integration constants P, and

P see [11]. The induced metric is therefore

2 _ (U BV 2 2 R’ 2 2 502
ds (R) [mydm dz” + ((Bum(U)) + fu,un) (Oura(u))” + qu(u7UA)>du +R ng]
u Lov R? 2 2 12
=3 N datdz” + Fw(u)du + R*dQs (8.8)
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where we defined

ub

v(u) = o <u6 me %>

The DBI action for the gauge fields on the D7 prob branes reads

3 ) ! 2T 9]
Sp2 = Rt WZ) T 3Tr/d4xdu<71/2(u)Fw,FW +
Js

(8.9)

2u?
B2 72(u)

FWFW> (8.10)

Using mode decomposition as in (3.7), the equation of motion for the ¢, are
Y200 (uPy T2 0un () = —mi R4 (u) (8.11)
and for the non-normalizable part it is
7 20u(uPy 20,00 (u,4?)) = —* R (u, %) (8.12)
For the antipodal case Py = P; =0, up = 1, (8.11) and (8.12) will simplify to
1200 (u? 12000 () = —mi B2 (u) (8.13)
and
F20u(u? F120un (1, 6%)) = —a° R?n (u. ¢°) (8.14)

After the change of variable u? = 1 + 22, we find

9. ((1+ zQ)OzQ,Z)n(z)) = —m2R*,(2) (8.15)
and
83((1 + 22)8z¢0(q2, z)) = —q2R2¢0(q2, z) (8.16)
One can transform (8.15) into a standard Schrodinger form via the transformation
1
z = sinh(z); (1) = ——=Vy(2) (8.17)
cosh(x)
and find
92 — l(1 + #) ¥, = —m2R%) (8.18)
T4 cosh?(x) " ne )

This eigenvalue problem has only two normalizable solutions and so the sum in (2.16) runs
only on these two modes.

Substituting (3.7) into (8.10) we get 4d YM action for the gauge fields with the kinetic
terms canonically normalized provided the SU(N) generator obey Tr[T°T"] = 5% and

the 1,, are normalized as

R3(27d! )2 T-9)

ROSTR [ duvbonts A (w) = Sun (8.19)
2R3 (7w )2 T

(ﬂ-g) (e /duwAn¢Am71/2(u) = 6nm (820)
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According to our prescription in section (3) the boundary terms , (3.12), (3.16) will be

given by

aynp = —1{7(m$LR2)71U2’771/28u¢Vn|u=oo (821)

AAn = —/17(miR2)_1u2’)’_1/26u7/}An’u:oo (822)
and

ayoy = —K7R72U2771/28u¢9/(2%q2)|u=00 (8'23)

axo = —k7R 2y 20,0 (u, ¢*) fu=co (8.24)
Where we defined

3(2ma’)? K
oo = UM (2mal) hir 2y (8.25)
Js

The correlators of the vector and axial-vector currents are given by the AdS/CFT prescrip-
tion (3.23), and we find

Iy (¢*) = <j&(q2)j\3(0)>F.T = —ayo(q?) (8.26)
and
Ma(q?) = (T4 (¢*)T50)) T = —aa0(q?) (8.27)
d d o, 9 0,2
S = —47Td—q2(ﬂv — 14| g2=0 = —47Td—qQ(aV(q ) = aa(q))lg2=0 (8.28)

For the antipodal configuration (uy = up = 1) (8.23), (8.24) becomes

_9 u3

a0 = —kR U f1120,0° (1, 4% fumoo = —K(R) 7?1204, 0%) =00 (8.29)

using uf'/2 = z we find
ap = —kR72(1 4 22)0.90° (1, ¢*)|.=00 (8.30)

The asymptotic behavior of ¢, (u, ¢*) could be read from (8.16) by expanding it in powers
of z71. Keeping only the leading order term (8.16) becomes

0. (Zzazwn) = —q2¢(q2, z) (8.31)

This has the form of an Euler equation and can be solved using ¥(q?, z) = 2% which leads
to an equation for «y
aglag — 1)+ 20, +¢* = ozg +a,+¢* =0 (8.32)
with the roots
-1+ /1 —4¢> 1 1 9
- = __ 4= 8.33
Qq 5 55 +4q (8.33)

So we have two asymptotic behavior a; = —1 + ¢® and oz;' = —¢%. One correspond to the

even mode and one to the odd mode. Plugging these solution into (8.28) would lead to a

diverging S-parameter!
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9 The conifold model with D7 — D7 flavor branes

So far we have discussed the S parameter of holographic technicolor models that are based
on gravity backgrounds with a cigar like structure of the sub-manifold that includes a
coordinate compactified on an S' circle and the radial direction. This structure of the
background ensures the confining nature of the dual gauge theory and the U shape solutions
for the probe brane profile implies the spontaneous breaking of its flavor chiral symmetry.
Recently, another type of a holographic model that admit these two features and which
is based on the conifold geometry was proposed in [12] and [13]. In this section we show
that this model also fits the general framework discussed in section (3) and we determine
the S parameter of the holographic techincolor scenario based on this model. In fact we
can discuss two such models. One based on the conifold geometry which is a conformal
model that does not admit confinement [12] and a one which relates to the deformed
conifold [13] which is a confining model. To simplify the analysis we discuss here the
former but a similar type of calculation can be done also to the latter. Thus we consider
here the conifold background. The flavor probe brane is taken to be a D7 and D7 anti
brane. It spans the space-time coordinates x,, the radial direction u and the three-sphere
parameterized by the forms f; (or alternatively w;). The transversal space is given by the
two-sphere coordinates # and ¢. The classical profile depend only on the radial coordinate.
The 10d metric is:

R?
dsfyg) = RA dx“dxfﬂ— Adsd 576 (9.1)

with the 6d metric given by
dS(G) = d?” + = ( (fl + f2) + f3 (d9 - %f2)2 + (sm(ﬂ)dq& — %f1)2> (92)

and the AdSs radius is Rids = %ﬂgsNTcﬁﬁ. Because the background has no fluxes except
for the Cy form the Chern-Simons terms do not contribute and the action consists only of
the DBI part

2 1/2
SpRBI X /duu3 <1 + % (92 + sin? Hd)i)) . (9.3)

Here the subscript ,, stands for the derivatives with respect to u. Setting 6 = 7/2 we easily
find the solution of the equation of motion

4

cos (%(ﬁ(u)) = (%) . (9.4)
There are two branches of solutions for ¢ in (9.4) with ¢ € [-7/2,0] or ¢ € [0,7/2].
For uy = 0 we have two fixed (u-independent) solutions at ¢_ = —%77 and ¢4 = %
The induced 8d metric in this case is that of AdSs x S® as one can verify by plugging
d¢ = df = 0 into (9.2). For non-zero ug the radial coordinate extends from u = ug (for
¢ = 0) to infinity (where ¢(u) approaches one of the asymptotic values ¢ ). The induced
metric has no AdSs x S® structure anymore. Notice that unlike the case of the Sakai
Sugimoto model, here the D7 probe branes do not reside at the antipodal points on the
(6,¢) two-sphere. This is due to the the conical singularity at the tip, so the S? does not
shrink smoothly.
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It is convenient to define a new dimensionless radial coordinate

8
u U

so that the D7 probe brane stretches along positive z and the anti-brane along negative z.

In terms of these the gauge fields action is given by

F2 w 8 3/2
Skw = k7Tr / drdz | ——Ee 116 | 2% + < 0 ) Fiz (9.6)
22 4 U0 )8 Raas

Rads

This form of the action translate into the following parameters in the framework for com-
puting the S parameter are

R7 = O.OOllNTc

A ) A ) v\ 3/4
a(z) = m b(z) =16 (z + <RAdS> ) (9.7)

Repeating the procedure of determining the S parameter using (3.24) we find

S = 0.043Nrc (9.8)
and the result using the sum-rule (2.16) is
Ss = 0.036N7c (9.9)

For comparison we substitute Np¢ = 4 to yield S = 0.17 and Sg = 0.114. Equating as
before the technipion decay constant to the electroweak scale we find that My is given by
5 (246GeV)?

_ \eADeV) 9.10
AT 0.202N ¢ (9.10)

so that for Ny¢c = 4 we get My = 1.5 TeV which gives m, = 3. TeV , m,1 = 5. TeV.

10 Summary

In this paper we have examined a variety of technicolor models through their holographic
duals. We have focused mainly on the S-parameter of these models. For that purpose
we presented the method used in [3] to deduce the holographic S-parameter and showed
how to apply the technique to general (suitable) background and then applied it on several
models. Generically Technicolor models admit a confinement behavior and spontaneous
flavor chiral symmetry breaking. Indeed some of the models we have chosen, the Sakai
Sugimoto model, the non-critical model and the model based on D5 branes admit both
these properties in their low energy regime. However, we have chosen also other type of
models. The uncompactified Sakai Sugimoto model is dual to a NJL like model. It does
not admit confinement but does undergo a spontaneous flavor chiral symmetry breaking.
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S(up/upn =1) | Sg(ug/upy =1) mp Ma,
D4—D8 (The SS model) 0.017Arc N7e | —.0008 A\rc Npe | 1.5TeV | 2.2TeV

D4—D8 (The AHJK model) | 0.016Arc N7 - - -

D4—D6 (The KMMW model) 0.5N7¢c 194N 0.7TeV | 1.16 TeV

AdSg + D4 095N 0.086 N1¢ 1.79TeV | 2.98 TeV
D3—D7 (The KW model+D7) 0.043N7c 0.036 N1¢ 3. TeV 5. TeV
D5—-D7 00 - — —

Table 1. The S-parameter of the six models, Npp = 2, S is given by the AdS/CFT dictionary (3.24),
Ss is the sum over the first eight modes in (2.16).

The conifold model is also non-confining. In fact prior to adding the flavor branes it is
invariant under conformal symmetry which is spontaneously broken due to the addition of
the flavor branes. The KMMW model with D6 branes is confining and it has a symmetry
breaking of the form U(N7pgr) X U(Npp) — Uy (Nrr). However, it is not a symmetry of
chiral fermions but rather a symmetry of Dirac fermions. From the point of view of the S-
parameters there is not much difference between the models that admits both confinement
and spontaneous flavor chiral symmetry breaking to the other models.

The direct estimation of the Peskin-Takeuchi S-parameter for a strongly interacting
sector is still a grave problem in technicolor model-building. But as was shown in [3] for the
Sakai-Sugimoto model, and also in the present paper a reliable estimate for the S-parameter
is with in reach if the field theory has a gravity dual. Strictly speaking the latter applies
only for large Npc and large Ape.

The results of the S-parameter and the low lying technivector mesons is summarized
in table 1.

In general the S-parameter is a function of all the free parameters of the theory
Nre, Are, Nrp and ug or instead the “string endpoint” masses defined in (3.26). As for
the dependence on Ny¢ and Apo there is a striking difference between the Sakai-Sugimoto
model both the compactified and the uncompactified and the rest of the models. Whereas
in the former models S depends linearly on the product of NyoArc, in the latter models
it does not depend on Apc but rather it is linear only in Nypo. The dependence of the
S-parameter on ug in some of the models is drawn in figure 2. We can see from this figure
that while the S-parameter in Sakai-Sugimoto model (and also its uncompactified cousin)
grows linearly with ug, the D4— D6 and AdSg + D4 models exhibit minor dependence on
this parameter. As explained around (3.26) the ug parameter is related to the string end-
point mass which is given roughly by w where M, is the mass of the corresponding
meson, Ty is the string tension and L is the length of the stringy meson. This mass pa-
rameter has nothing to do with the current algebra or “QCD” mass and hence one cannot
compare it to the dependence on the mass found in [1] at the weak coupling regime.

The dependence on Npp is more tricky. If one naively embed the U(2) € U(Npp
in such a way that the generator of SU(2) for instance T3 is just one and -minus one in
the upper terms along the diagonal, then there is no dependence of the S parameter on
Nrpp since it relates to the electroweak currents that are affected only by the upper 2 x 2
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The S-parameter of the D4-D8, D4-D6 and the non-critical
models verses U 0.

*
40
*
x
30
x
| *
S/k *
Zo_inmu o O o o o
10“++++ +
+ + + + +
0 T T T T T T T T
10 20 30 40

U0
+ non-critical © D4-D6 + D4-D8

Figure 2. S-parameter of the AdSg + D4 non-critical model, D4 — D8, and D4 — D6 models vs. ug
(up = 1).

block of the Nrrp X Npp matrices. However, if we generalize the models discussed in the
paper with only a single factor of SU(Npp = 2), to a set of % of such group factors,
this should yield an S parameter which is % times bigger than the one of a single group
factor. The holographic realization of such a scenario is by taking % pairs of U shape
flavor probe brane and distribute them along the radial direction, namely assign to each
of them a different ug. In the non-critical, KMMW and KW+D7 models the S- parameter
barely depends on ug and hence a summation over all the pairs of U-shape flavor branes is
definitely justified. However for the Skai Sugimoto model and his uncompactified cousin,
the S-parameter depends linearly on ug and thus a naive summation is incorrect. One can
of course introduce very small differences in the values of the ug associated with each pair

and in this way the summation result will be a reasonable approximation.
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We demonstrate these results for the AdSg + D4 non-critical model and the KMMW

model. For the anti-podal configuration S is given by

5 3N7sNre

and in the D4 — D6 system it is

Nty Nrpe

S = 20.3k6 = 20.3
o 2(27)2

= .25N7sNr. (10.2)
Of course holography is not the only way to estimate the S-parameter, in [1] a few phe-
nomenological formula where suggested in order to estimate the S-parameter of technicolor
models with QCD like dynamics. The starting point of their formulas is to use eq. (2.16)
with the masses and decay constants of the techni-hadrons given by assuming the large-IN
rescaling relations between these to their QCD counterparts. They found by summing over
the first two hadronic resonance pr. and ajp., that for a model with SU(N7.) technicolor
gauge group and Npp SU(2) doublets S is given by

Npr N
Sy~ 0.247—L T Te (10.3)
2 3
While our holographic summation over the first two resonance gave
Npr N
So.ags, ~ 0.213—L T¢ (10.4)

2 3
Comparing these two estimates reveals a remarkable agreement between these two very
different machineries!

We can continue and compare the estimated mesons masses according to the large-IV

scaling relations

2,2 2,2
sz ~ LF”TP : m(QIIT ~ 6 FWT;L‘“ (10.5)
NrcNry o f2 NrcNry  f2
using the data
mp, =~ TT5Mev;  mg, ~1230Mev;  F2 = (246GeV)?; 2~ (92GeV)?  (10.6)

we find for Ny, =4 and Npy = 2
My, ~ 1.79Tev ; Mayy ~ 2.8Tev (10.7)

By holography we found in (6.18) (using (6.16) to set the Kaluza-Klein scale to My =
2.4 TeV by which we measure all quantities in the theory)

Mpy = 0.74Mp = 1.78Tev; Mgy, ~ 1.23My = 2.98Tev (10.8)

Again we find an agreement within a few percent between the two.
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